
Key Management for Onion Routing
in a True Peer to Peer Setting

Paolo Palmieri1 and Johan Pouwelse2

Parallel and Distributed Systems, Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

1p.palmieri@tudelft.nl 2peer2peer@gmail.com

Abstract. Onion routing is a technique for anonymous and privacy pre-
serving communication at the base of popular Internet anonymity tools
such as Tor. In onion routing, traffic is relayed by a number of inter-
mediary nodes (called relays) before it reaches the intended destination.
To guarantee privacy and prevent tampering, each packet is encrypted
multiple times in a layered manner, using the public keys of the relays.
Therefore, this mechanism makes two important assumptions: first, that
the relays are able to communicate with each other; second, that the
user knows the list of available relays and their respective public keys.
Tor implements therefore a distributed directory listing the relays and
their keys. When a user is not able to communicate with relays directly,
he has to use special bridge servers to connect to the onion network.
This construction, however, does not work in a fully peer to peer setting,
where each peer only knows a limited number of other peers and may not
be able to communicate with some of them due, for instance, to NAT or
firewalls. In this paper we propose a key management scheme for onion
routing that overcomes these problems. The proposed solution does not
need a directory system and does not imply knowledge of all active re-
lays, while it guarantees the secure distribution of public keys. We also
present an alternative strategy for building circuit of relays based on
bloom filters. The proposed construction overcomes some of the struc-
tural inefficiencies of the Tor design, and opens the way for implementing
onion routing over a true peer to peer overlay network.

Keywords: Key Management, Onion Routing, Peer to Peer

1 Introduction

At the beginning of its diffusion to the general public, Internet was perceived
by most users as a private or even anonymous medium of communication [19].
However, this perception has changed over the years, and the lack of online pri-
vacy is becoming more and more evident (and for some worrisome) to the users.
Anonymous communication over the Internet is thus receiving increased interest
and attention. A particular kind of application whose users are particularly con-
cerned about privacy is that of peer to peer (p2p) systems. However, most peer to
peer applications currently lack effective measures to protect the privacy of their



users. Those that do attempt at building privacy-preserving and anonymous p2p
networks, such as Freenet [6] or GNUnet [3, 2], have often found scarce adoption,
mostly due to the relatively difficult operation of such software by inexperienced
users and (paradoxically) to the small existing user-base, which makes them
unattractive to new users. The first software for private and censorship-resistant
communication to receive widespread attention by non specialized users was Tor
(The Onion Router) [7], who now counts millions of active users. Tor can be
used to connect to existing Internet services in an anonymous manner, but it
is not designed for peer to peer: users are actually actively discouraged from
running p2p software such as Bittorrent over its network. Likewise most tools
for achieving anonymity over the Internet, Tor relies on a multiple relay setup,
in which communication between the originator (the user) and the destination
(the web service) is tunneled through a number of proxies, called relays. Tor uses
a specific approach to the relaying of messages, called Onion Routing (OR) [20].
In onion routing, messages are repeatedly encrypted: each relay removes a layer
of encryption, and then forwards the message to the next relay, where this is re-
peated. This prevents intermediary hops from learning the contents, origin and
destination of any message that passes through them. In the Tor setup, relays
are publicly disclosed and organized in a directory system, which allows users to
locate active relays and retrieve their public key information. The directory is
especially needed for one reason: clients communicate only with the first relay in
a circuit, and rely on its services to talk to relays further down the chain in or-
der to preserve their privacy. This prevents them from contacting directly other
relays to obtain their public key, and makes the directory necessary to prevent
the first node from impersonating other relays in the circuit. However, while the
directory is distributed among several “trusted” nodes, this scenario is far from
a real peer to peer setting, in which we can not assume peers to have a full view
of the network, or even be able to connect to all nodes (due to NATs, firewalls,
etc.). Therefore, if we are to implement an onion routing mechanism over a true
peer to peer setting, we need a key distribution and management mechanism
that takes into account the critical peculiarities of peer to peer systems.

1.1 Contribution

In this paper, we discuss why the directory infrastructure used by Tor for key
distribution is not applicable to a peer to peer setting, where peers are at the
same time clients and relays, they do not know the full list of other relays or the
network topology and may not even be able to connect to part of the peer list
known to them. While key management schemes for peer to peer settings already
exist in literature, none of them addresses the specific needs of distributed onion
routing systems, and in particular the impossibility of challenging peers directly
to confirm their identity or obtain their keys. Existing peer to peer designs based
on anonymizing relays, on the other hand, do not implement a Tor-like onion
routing, which, due to the resilience to attacks proved by the Tor network, is
believed to be a reliable privacy-preserving mechanism. We address these issues
by proposing a novel scheme implementing a Tor-like secure key distribution



and management mechanism based on a true peer to peer overlay. The solution
presented in this paper allows the secure retrieval of temporary onion keys,
and their validation against the long-term identity key for each relay, while not
requiring a directory structure based on trusted known nodes. In the design of
our solution we also provide an innovative mechanism for selecting relays during
circuit creation based on bloom filters, which might be of independent interest.

1.2 Related works

While no established peer to peer software uses onion routing, its adoption has
been proposed in various theoretical designs [14]. However, the lack of a dis-
tributed Tor-like key management solution imposed to deviate from the stan-
dard onion routing paradigm. ShadowWalker [15] constructs circuits based on
a random walk over a redundant structured topology, while Saboori and Mo-
hammadi propose a design relying on supernodes so that no peer can identify
the communicating parties with certainty [18]. Landsiedel et al. instead extend
onion routing by allowing the first half of the path to be selected by the sender
and the second half by the receiver of the packet [9]. A sizable part of relevant
literature focuses instead on a way to perform secure and anonymous lookups
(in this context, useful for retrieving the public keys) [21]. Torsk [12], in partic-
ular, utilizes a combination of two p2p lookup mechanisms, in order to preserve
the confidentiality and integrity of lookups. On the other hand, distributed key
management schemes based on the concept of distributed hash table have been
proposed in the past [17, 22, 11]. These mechanisms present solutions for a num-
ber of different purposes: among them, multimedia streaming services, where
the goal of distributed key management is to safeguard content security [17, 16],
mobile ad-hoc networks [13], or (heterogeneous) wireless sensor networks [10, 5].

2 Onion Routing and Key Management in Tor

The concept of onion routing was first proposed by Syverson, Goldschlag and
Reed in 1997 [20], but it was only in 2002 that Dingledine, Mathewson and again
Syverson refined the paradigm and finally implemented it as the Tor software
[7]. The aim of onion routing is to protect the identity and network activity of its
users from surveillance and traffic analysis. This goal is achieved by concealing to
external observers both the content and routing information of the user’s traffic,
which is forwarded through a virtual circuit composed of three successive relays.
Each relay only knows the preceding and following node: this guarantees sender’s
anonymity to all relays except the first and the secrecy of the destination to all
relays except the last. At the same time, communication is repeatedly encrypted
with a public key encryption scheme in a layered manner, using in inverse order
the public keys of all the relays in the circuit. Traffic going back to the user from
the destination is similarly encrypted and routed from the last to the first relay,
and on to the user. In general, Tor allows users to connect to any Internet service
independently of the protocol, as long as the software supports Socks proxying.



Tor uses a number of different encryption keys, for three different purposes:
encryption of traffic, verifying the identity of the relays, and making sure that
all clients know the same set of relays. Encryption is performed on all connec-
tions within the Tor network. Tor uses TLS link encryption, which guarantees
that observers can not learn which circuit a given packet is intended for. Fur-
thermore, Tor clients establish a session key with each relay in the circuit. This
extra layer of encryption ensures that only the exit relay can read outbound
packets, and only the users can decrypt inbound traffic. Both sides discard the
session keys when the circuit is disposed of, achieving forward secrecy. Every
Tor relay generates regularly (once a week) a public and private key pair called
onion key. When a Tor client establishes a circuit, at each step it challenges the
Tor relay to prove knowledge of its onion key, to prevent spoofing. Since the
Tor client chooses the path independently, circuits are based on the concept of
distributed trust : no single relay can learn both the client address and the traffic
destination. The list of relays and their keys are shared through a distributed
directory. Fast and stable servers are selected for the task directly by the Tor
developers, and locations and public keys for each directory authority (a relay
hosting the directory service) are hard-coded into the Tor client software. Each
relay has a long-term signing key pair called identity key. Each directory author-
ity additionally has a directory key. The directory authorities provide a list of
all known relays signed with its directory key. The list also contains the onion
key for each relay (signed with their identity key).

3 Distributed Hash Table (DHT) Networks

Large decentralized, distributed systems are notoriously difficult to design and
implement. Successful designs are often based on simple primitives, such as the
distributed hash table (DHT). A DHT can be used to efficiently store and retrieve
data (for instance, files) in a distributed manner, while respecting the three
main properties of peer to peer systems: operating without central coordination;
being able to accommodate nodes joining, leaving, or failing without disruption
of service; and functioning efficiently for any number of peers. Over the years,
many different DHT’s have been proposed in literature, but only a subset has
found widespread usage. A notable example is Mainline DHT, introduced by the
developers of peer to peer software Azureus and then incorporated in a slightly
modified version in the BitTorrent protocol, used daily by millions of users. In
general, DHT are nowadays regarded as one of the most stable and efficient set-
ups for peer to peer network [1]. Given the growing interest in privacy preserving
techniques for DHT networks [8], we base our scheme on this network structure.

A DHT is built over a keyspace1, usually defined by a hash function: an
example is the set of all strings of length 160 bits output by SHA-1. A partitioning
scheme for the keyspace is used to divide responsibility for the keyspace among

1 We use the term keyspace for consistency with the relevant literature, bit it is im-
portant to clarify that the keyspace of a DHT has no relation to the keyspace of the
PKC schemes we use for the purposes of onion routing in the following.



the peers participating in the network. This is achieved by defining function
measuring the distance between two values in the keyspace, and by assigning to
each peer a value in the keyspace called identifier : the peer is then responsible for
the subset of values that have less than a predefined distance from his identifier
value. Finally, an overlay network connecting the peers is generated. Each peer
maintains a connection to a number of other peers, called neighbors. Neighbors
are selected according to a certain structure, known as the network topology,
which, together with the hash and distance functions, defines the specific DHT.
Once a DHT is established, peers are able to find peers responsible for any
given value in the keyspace. While the design of our key management scheme is
independent of the specific DHT, we assume the DHT to specify: a keyspace K
of size s; a hash functions h mapping information that can be retrieved through
the network (files, etc.) to values in the keyspace; a function fdist for determining
the distance between two values of the keyspace; and the distance d within which
a peer is responsible for keys in the keyspace. We also assume the keyspace to
be two-dimensional: given a distance d, a function fdist, and a value v in the
keyspace, there are exactly two values v+ and v− for which

fdist
(
v+

)
= fdist

(
v−

)
= d . (1)

The distance d should be calibrated over the number of peers in the network:
if the value is too high, each peer has to store too much information, while if
d is too low information is spread too thin and may be difficult or impossible
to retrieve. For this reason, some DHT constructions adjust this value during
operation of the network. The key management scheme for onion routing we
propose in the following is therefore able to accommodate for a varying d.

4 Onion Routing Key Management over a DHT Network

In the following we propose a key management mechanism for achieving onion
routing over an existing DHT peer to peer network. In particular, we imagine a
scenario in which peers in the network communicate and transmit information
according to the employed DHT construction, but also want to preserve their
privacy by using onion routing in the communication within the peer to peer
overlay. Therefore, when retrieving information (such as files) over the peer to
peer network, peers relay the communication through a number of other peers,
following the onion routing principles described in Section 2.

Being a peer to peer scenario, we assume that each peer in the network acts
as both a regular user and as a relay, as opposed to the Tor implementation in
which most relays are dedicated servers and most users do not relay traffic. In
order to be able to act as a relay, a peer creates during bootstrap an identity key
pair, using a public key encryption scheme. Identity keys, similarly to the key
management of Tor, are kept by the peers indefinitely. Additionally, the peer
also creates a temporary onion key pair, which expires after a predetermined
amount of time and is then replaced by a new pair. The two different key pairs
serve different purposes: the identity key is used prove the identity of the peer



and sign information regarding it, so that other peers can verify it as legitimate.
The onion key, instead, is used for actual communication during the creation of
onion circuits, and specifically before the generation of the symmetric session
key with which the peer encrypts traffic for the relays and vice versa. In order
to participate in the network, a peer needs to distribute the public keys of both
his identity and onion pairs. In the following, we describe how the different
keys are spread across the network, and which peers are responsible for storing
and distributing the keys. We say that a peer owns a key (whether it is an
identity or an onion key) if he generated the key himself, while we say that a
peer is responsible for a key if he stores the key and distributes it to other peers
requesting it. The novel key distribution scheme we propose still relies on the
underlying DHT structure for the actual transmission of the information: keys
are transmitted over the network in the same way files are, following the specific
DHT protocol employed. We assume the number of relays in a circuit to be 3.

Identity Keys Distribution The peers responsible for the identity key
of a peer are determined by hashing the identifier for the peer using the hash
function employed by the DHT scheme, similarly to any information shared in
the network. As defined in the previous section, a peer X is responsible for the
identity key iP ∈ K of the peer P if: fdist (X − h (P )) < d. This defines a subset
IB of size 2d of the keyspace K. The peer owning the key is responsible for
initiating the distribution of its identity key to the peers responsible for storing
it. This is done using the information retrieval algorithm of the underlying DHT
scheme. Should d increase during operation, peers already responsible for the
key distribute it to the new peers in IP . Should d decrease, instead, peers that
are no longer in IP just drop the key and stop distributing it.

Onion Keys Lifetime Similarly to the Tor design, we require onion keys
to be replaced after a number of hours t. Tor uses a time interval of one week,
but in our peer to peer design we leave the decision on the interval duration to
the protocol implementation, depending on the specific needs of the network. In
order to prevent flooding of the network at the end of each validity interval, when
all onion keys expire at the same time, we divide the peers into subgroups, and
we assign to each subgroup a different time offset from the reference expiration
time. We determine the time offset according to the identifier of the peer owning
the onion key: we consider the first n bits of the identifier value in order to have
2n different expiration times. For instance, given a reference time, all peers with
the first n bits of the identifier having value 0 have no offset (their key expires at
the reference time), those with value 1 have a positive offset of one hour (their
key expires one hour after the reference time) and so on. Assuming identifiers
are chosen uniformly in the keyspace, this divides equally the peers. Moreover,
if the identifier of a peer is known, so are the expiration times of his onion keys.

Onion Keys Distribution Temporary onion keys are stored within the
DHT network similarly to identity keys. However, peers responsible for storing
the identity key of a peer will never be responsible for his onion keys too. More-
over, a peer responsible for the onion key of a peer for the current time interval,



will not be responsible for a key of the same peer for a number of following time
intervals. We achieve this using the following distribution scheme. For each peer
P and his identifier iP ∈ K, we divide the keyspace (and hence the other peers
in the network) into u = s

2d partitions of size 2d, such that one such partition
coincides with IP , as defined above. Peers in each partition except IP cyclically
store the current onion key for P . The arbitrary function

fon : K → {all possible partitions of K of size 2d} , (2)

defines the partitions. It takes an identifier i ∈ K as input and outputs the set
of partitions {O1, . . . , Ou−1}, such that O1, . . . , Ou−1 are disjoint subsets of K
of equal size and O1 ∪ . . . ∪ Ou−1 = K r {IP } . In any u − 1 contiguous time
intervals, each available partition is selected once for storing the onion key of
the peer, starting with O1 and proceeding in ascending order till Ou−1. The
peer owning the key is responsible for the distribution of the next key to the
peers in the appropriate partition On before the current key expires. Should d
change, the partitions are adjusted from the next time interval. When a peer is
queried for onion keys he is responsible for, he always reply with all of them:
that is, queries are not made for retrieving a specific key, but for retrieving all
keys under the responsibility of one peer.

4.1 Building an Onion Circuit

The process of building an onion circuit is more complex in a peer to peer setting
than it is for Tor, as peers have only a partial view of the network. In building
a circuit, this means that two consecutive relays may not able to communicate
with each other, thus causing the circuit to fail. This issue may be addressed
by letting the first relay in a circuit decide the second, and so on. However, if
the user stumbles on a first relay that is malicious, then the whole circuit will
be likely composed of malicious nodes. Therefore, we decide to keep the circuit
creation and relay selection under the user’s direct control, and we propose the
use of bloom filters to let the user identify which relays can connect to each
other.2 In particular, we require each peer to attach to his public onion key a
bloom filter where the neighbors of the peer have been encoded, called neighbor
bloom filter and built over the neighbors’ identifiers. The filter, as well as the
onion key, must be signed by the peer with his identity key, and is stored and
distributed together with the onion key. The neighbor filter lets us construct
circuits in which the relays can communicate to each other: the peer building
the circuit can in fact calculate the intersection of the filters of the potential first
and last relays to identify whether they have a common neighbor that can be
used as middle relay. But the bloom filter does more than that: it also allows us
to evaluate the relatedness of relays, based on the number of common neighbors.

2 Bloom filters (BF) are space-efficient data structures representing a set. A BF gen-
erated for a set allows to determine, without knowledge of the set itself, whether an
element is in the set or not. In the following we assume knowledge of the bloom filter
definition and properties: the interested reader can find a thorough discussion in [4].



We may want, for instance, to build a circuit in which the first and third relays
are not neighbors, nor have more than n common neighbors, in order to diversify
the circuit and reduce its locality (for a security discussion, see Section 5).

Considering that all peers are responsible, at some point in time, for an onion
(or identity) key for all other peers, due to the distribution mechanism described
above, all peers are naturally aware of most of other peers (the exception being
the peers that entered the network later than u − 1 time intervals before the
current one). No further step is therefore necessary for a peer to discover new
peers prior to building a circuit, as the identifiers of (most) other peers are
known. A circuit is built as follows:

1. The peer selects a potential first relay among his neighbors, and acquires his
onion key and neighbor filter through the DHT (and not directly from the
neighbor himself).

2. Once the relay information for the first relay has been acquired, the peer
identifies potential third relays by calculating the intersection between their
neighbor filter b3 and the one of the first relay b1. The peer queries peers
through the DHT to acquire additional relay information if necessary. Then
he selects a third relay satisfying the following requirements: not being a
neighbor of the first one nor the peer; and having a number of common
neighbors with the first relay within the range defined as acceptable by the
peer. Once the third relay is selected, the peer sends to the first relay the
intersection filter bi = b1∩b3. Then, the peer instructs the first relay to build
a circuit with one of his own neighbors whose identifier satisfies bi.

3. The peer communicates to the second relay through the first one in an en-
crypted manner (following the onion routing scheme), and instructs him to
extend the circuit to the selected third relay. The second relay is a neighbor
of both the first and third relay minus the false positive probability of the
intersection bloom filter. In case the second relay is unable to communicate
to the third one, the peer starts again from step 2.

5 Security Analysis

In this section we analyze the security of the proposed key management scheme.

Distributed Trust No single relay in the circuit should be aware of both the
initiating peer and the traffic destination. We achieve this by letting the peer
select independently the first and last relay, and by not disclosing to the first
relay the identity of the third one. This is possible thanks to the use of the
intersection of neighbor filters, as explained in step 2 of the circuit building
protocol. This, in turn, allows the first relay to extend the circuit to a neighbor
able to communicate with the third relay without knowledge of his identity. It
is important to note here that the first relay does learn the list of potential
third relays, as this is the same list as the list of neighbors of the second relays.
However, since relays can only communicate with their neighbors, this issue is
impossible to prevent in a peer to peer setting.



Information Leakage when Querying Relay Information When a peer queries
other relays through the DHT for retrieving relay information, he somehow re-
veals his willingness to build a circuit with one of those relays. Calibrating the
onion key lifetime and increasing the number of queries performed by a peer
during each time interval is however sufficient to prevent potentially identifying
information from being leaked: computing a correlation is possible only if the
queries recover relay information for a limited number of peers only.

Identity Key Verification The identity key of each peer is verified directly by
the peers responsible for its distribution through a challenge. When the challenge
can not be accomplished (for example, if the peer responsible for the key is unable
to contact the owner), the peer responsible for the key does not distribute that
key. Having a subset of peers distributing the identity keys makes an attack
possible if at least a majority of those peers collude in order to reply with a
fake key instead of the real one. However, we note here that the peer building
the circuit obtains onion keys from a different set of peers, and is also aware
of the partition of peers in the network responsible for that specific identity
key. The attack is therefore limited to preventing a peer from using the selected
peer as relay, as the onion key can not be verified against the (fake) identity
key. Moreover, should a subset of peers be responsible for a statistically relevant
number of un-verifying keys, the peer building the circuit can choose to discard
keys from that subset entirely.

Onion Key Verification The onion key for the current time interval is verified
by the peer directly with the relay through the circuit, by asking the relay to
reply a challenge in the same way Tor does.

6 Conclusions

In this paper, we propose a key management scheme for the distribution of onion
keys over a DHT peer to peer network. Achieving onion routing in a true peer to
peer setting is in fact a complex task, as no participating peer can be assumed
to be able to connect to any other peer. This, in turn, makes the creation of a
distributed relay directory similar to the one implemented by Tor impossible. The
key distribution scheme we propose addresses this problem by distributing the
onion encryption keys among the peers in an decentralized manner. We enable
peers to select circuits without knowledge of the full list of relays, and we ensure
that selected relays are able to communicate with each other without disclosing
their identity by using a bloom filter structure indexing each relay’s neighbors.
The proposed construction allows the implementation of onion routing over peer
to peer application used every day by millions of users, and finally provides and
answer to these user’s increasing demand for privacy.

References

1. Balakrishnan, H., Kaashoek, M.F., Karger, D.R., Morris, R., Stoica, I.: Looking
up data in p2p systems. Commun. ACM 46(2), 43–48 (2003)



2. Bennett, K., Grothoff, C., Horozov, T., Patrascu, I.: Efficient sharing of encrypted
data. In: Batten, L.M., Seberry, J. (eds.) ACISP. LNCS, vol. 2384, pp. 107–120.
Springer (2002)

3. Bennett, K., Grothoff, C., Horozov, T., Patrascu, I., Stef, T.: The GNet whitepaper.
Tech. rep., Purdue University (2002)

4. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

5. Chung, K.I., Sohn, K., Yung, M. (eds.): 9th International Workshop on Information
Security Applications, WISA 2008, LNCS, vol. 5379. Springer (2009)

6. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anony-
mous information storage and retrieval system. In: Workshop on Design Issues in
Anonymity and Unobservability. LNCS, vol. 2009, pp. 46–66. Springer (2000)

7. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion
router. In: USENIX Security Symposium. pp. 303–320. USENIX (2004)

8. Isdal, T., Piatek, M., Krishnamurthy, A., Anderson, T.E.: Privacy-preserving p2p
data sharing with oneswarm. In: SIGCOMM. pp. 111–122. ACM (2010)

9. Landsiedel, O., Pimenidis, L., Wehrle, K., Niedermayer, H., Carle, G.: Dynamic
multipath onion routing in anonymous peer-to-peer overlay networks. In: GLOBE-
COM. pp. 64–69. IEEE (2007)

10. Lu, K., Qian, Y., Guizani, M., Chen, H.H.: A framework for a distributed key
management scheme in heterogeneous wireless sensor networks. IEEE Transactions
on Wireless Communications 7(2), 639–647 (2008)

11. Luo, Z., Li, Z., Cai, B.: A self-organized public-key certificate system in p2p net-
work. Journal of Networks 6(10), 1437–1443 (October 2011)

12. McLachlan, J., Tran, A., Hopper, N., Kim, Y.: Scalable onion routing with torsk.
In: ACM CCS. pp. 590–599 (2009)

13. van der Merwe, J., Dawoud, D.S., McDonald, S.: A survey on peer-to-peer key
management for mobile ad hoc networks. ACM Comput. Surv. 39(1) (2007)

14. Michéle, B.: Using Onion Routing in Well-Established P2P Networks to Provide
Anonymity. Master’s thesis, Technische Universität Berlin (December 2008)

15. Mittal, P., Borisov, N.: Shadowwalker: peer-to-peer anonymous communication
using redundant structured topologies. In: ACM CCS. pp. 161–172 (2009)

16. Naranjo, J.A.M., López-Ramos, J.A., Casado, L.G.: Key management schemes for
peer-to-peer multimedia streaming overlay networks. In: WISTP. LNCS, vol. 5746,
pp. 128–142. Springer (2009)

17. Qiu, F., Lin, C., Yin, H.: EKM: An efficient key management scheme for large-scale
peer-to-peer media streaming. In: PCM. LNCS, vol. 4261, pp. 395–404. Springer
(2006)

18. Saboori, E., Mohammadi, S.: Anonymous communication in peer-to-peer networks
for providing more privacy and security. CoRR abs/1208.3192 (2012)

19. Sheehan, K.: Toward a typology of internet users and online privacy concerns. Inf.
Soc. 18(1), 21–32 (2002)

20. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion
routing. In: IEEE Symposium on Security and Privacy. pp. 44–54. IEEE (1997)

21. Wang, Q., Mittal, P., Borisov, N.: In search of an anonymous and secure lookup:
attacks on structured peer-to-peer anonymous communication systems. In: ACM
CCS. pp. 308–318. ACM (2010)

22. Wen, Z., zhang Niu, S., cheng Zou, J.: A Key Management Mechanism for DHT
Networks. In: IIH-MSP. pp. 339–342. IEEE (2012)


