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Abstract

In a scenario with two mutually distrusting players, Oblivious Transfer, a rather
fundamental primitive in the design of cryptographic protocols, cannot be imple-
mented with unconditional security over a standard, error-free communication
medium. Various results, however, show that we can make use of noisy channels,
where we can exploit errors in the communication to our advantage in order to
implement OT in a secure fashion. First tested against standard primitives like
the Binary Symmetric Channel, it has later been demonstrated how to build OT
over a fair number of new noisy channels models proposed over the years. How-
ever, these models are usually derived from the BSC itself, and different sources
of noise have been scarcely explored.

In this paper we propose a new noisy channel primitive, called Binary Discrete-
time Delaying Channel. The aim is to model a realistic scenario in communica-
tion systems, while basing it on as few assumptions as possible. In particular,
we make use of a rarely used error source, the delays in communication. We also
provide a way to securely build OT over this new model in the semi-honest sce-
nario, and then we add some robustness to the protocol, mitigating the influence
of a cheating transmitter. The flexibility and generality of this new model may
open the way for future implementation, especially in media where delays are a
fundamental characteristic, as in the case of wireless communications.

1 Introduction

The relevance of Oblivious Transfer (OT), as well as of other primitives like Bit Com-
mitment, in the design of cryptographic protocols is widely recognized [1, 2]. However,
in a scenario with two mutually distrusting players, such a fundamental primitive can-
not be implemented with unconditional security over a standard, error-free communi-
cation medium. Thus the importance of using noisy channels, where we can exploit
errors in the communication to our advantage in order to implement Oblivious Transfer
in a secure fashion. Crépeau and Kilian have in fact successfully demonstrated how
to build the primitive over a Binary Symmetric Channel (BSC) [3], a theoretical com-
munication channel where bits have some fixed probability of being flipped during the
transmission. Other models of communication channels have since been designed and
studied, in respect of their property of being a good medium over which to build OT.
Crépeau later returned on the subject [4], and then, together with Morozov and Wolf
[5], observing how OT can be built over any non trivial noisy channel. A more recent
paper by Nascimento and Winter [6], explores the subject of which noisy channels are
useful for obtaining OT.

Over the years, a fair number of noisy channel models have been proposed, most
derived from the BSC itself, and it has been shown how to build OT over them. The



concept remains however similar: the channel is used many times by the parties, to
benefit from privacy amplification, and some error correcting codes are used to ensure
an error-free communication when needed. The Unfair Noisy Channel (UNC), a weaker
and therefore less assuming noisy channel, was introduced by Damg̊ard, Kilian and
Salvail [7]. Instead of a fixed error probability, as in the case of a regular BSC, this
channel allows for a known range of possible noise levels, and, to add more generality,
it also let the potential attacker to be given the advantage of knowing exactly what the
actual noise level is (from which the name “unfair”). In this context, Damg̊ard et al.
proved that a UNC can be used to build OT when the noise range is inside a specific
threshold, widened in a further work [8], and that it is impossible for other values. Yet,
there is still today a part of the graph (and hence a set of possible noise ranges) where
it is uncertain whether or not OT could be possibly implemented with unconditional
security.

In [9], Wullschleger proposes a new set of noisy channels, called Weak Noisy Chan-
nels (WNC). In particular, he revised two common primitives redesigning them into
a new fashion: the Weak Erasure Channel (WEC) and the Weak Binary Symmetric
Channel (WBSC). The aim of this work was to define the channels not with a pre-
defined set of functionalities, but only by a set of conditions that the channels must
satisfy. In this way, the primitives allow the attacker some more freedom. For in-
stance, it is taken into account the possibility for a malicious player to know, with a
certain probability, if the bit received through the channel was in fact correct or not.
Wullschleger then successfully proves, for a certain range of parameters, that OT, or,
more generally, any secure two-party computation, can be achieved on the channels.

Every new proposed channel try to ease the inherent assumptions needed to imple-
ment OT over it in a secure manner, but we are still far from reaching a practically
implementable solution. Research has been, up until now, bound to information the-
oretic primitives like the BSC and has not provided a model apt to design a more
realistic scenario, based on actual communication systems. Moreover, while it has
been demonstrated that OT can be generally built on almost any noisy channel [5],
as seen before, there still is lack of studies on how to use for that purpose the errors
naturally present in various types of communication.

1.1 Contribution

In this paper, we present a new noisy channel primitive, called Binary Discrete-time
Delaying Channel, whose aim is to model a realistic scenario in communication. In
particular, we make use of a rarely used error source, the delays in communication. We
then show how to build OT over this new model, and demonstrate that, in a scenario
where players are honest-but-curious, the proposed channel allows for any secure two-
party computation to be achieved. The last part of the paper analyzes how to add
some robustness to the protocol, mitigating the influence of a cheating transmitter.

The flexibility and generality of this new model may open the way for future im-
plementation, especially in media where delays are a fundamental characteristic, as in
the case of wireless communications.

2 Transmission delay as a source of noise

Reducing or limiting delays has always been one of the main challenges in the com-
munication field. Delay is, by definition, difficult to predict and almost impossible to
eliminate. Moreover, in real and non-isolated systems it usually depends on external,
non-controllable factors. It is a fundamental matter in wireless communications (see,
as reference, [10]), but it is also a common problem in wired IP networks.

While having these appealing characteristics, delay has not been systematically used
as a source of noise in noise-demanding security application. In particular, complete



and specific studies are still missing. We will address this lack by providing a new
channel model based on delay, and demonstrating how secure two-party computation
can be achieved using it.

2.1 Binary Discrete-time Delaying Channel (BDDC)

Our model of communication channel is a box which accepts strings of input symbols
and, for each string of symbols admitted, emits an identical output string after a certain
delay. The channel operates at discrete times, which means that it is not continuously
accepting inputs and emitting outputs, but these actions can only occur at specific
points in time.

For simplicity, we assume that the action of accepting or emitting a string is instan-
taneous, that is, it takes no time to be accomplished. We also adopted the mathematical
symbols < and >, when comparing two instants in time t0 and t1, to express that t0
occurs earlier in time, when using the former, or later, when using the latter, than t1.
Accordingly, when using ≤ and ≥, we are also taking into account the possibility of
having t0 and t1 occurring at the same time.

Definition Let t0 < t1 < t2 < . . . be a sequence of distinct consecutive instants
in time called input times, and let u0 < u1 < u2 < . . . be a sequence of distinct
consecutive instants in time called output times, where, for every input time ti and its
corresponding output time ui, ui ≥ ti. A Binary Discrete-time Delaying Channel with
delaying probability p is a channel accepting, at discrete input times, inputs made of
binary strings and emitting, at the corresponding output time, those same unchanged
binary strings with a probability p, for every string admitted into the channel at any
input time ti and due to be emitted at output time ui, to be delayed for emission until
ui+1. That is, if S is the string transmitted at input time t0, and u0 is the smallest
output time for which u0 ≥ t0, u1 the second smallest and so on and so forth, then
the channel is characterized by the conditional probabilities Pr(u0), Pr(u1), Pr(u2),
. . . where Pr(ui) is the probability of S being outputted at time ui

Pr(ui) = pi − p(i+1)

Example The probability of a string S admitted at t0 to be emitted without delay at
u0 is

Pr(u0) = 1− p

The channel is memoryless. A string of symbols is delayed with probability p
independent of the history of symbols or delays. For instance, the probability for two
strings sent at the same input time ti of being both delayed while transmitted is p2.
Moreover, neither the sender nor the receiver gets any feedback about the transmission,
i.e. they don’t learn any information about whether or not a string sent or received
was actually delayed.

It should be noted that there is no strict requirement regarding the discrete output
times in relation to the input ones. For example, while logically ui cannot precede on
the time-line ti, it is perfectly acceptable for the purpose of the channel both having
ui and ti happen simultaneously, or having ui happening later, even after any number
of tj with j > i.

3 Building Oblivious Transfer over a BDCC

The construction is inspired by the one proposed by Crépeau and Kilian while describ-
ing for the first time how to build OT over the BSC in [3].



As per the original concept of Oblivious Transfer (presented by Rabin in [11]) a
sender Sam has two secrets bits, b0 and b1, and wants to communicate one of those two
to a receiver Rachel, without at the same time revealing the other. Rachel wants to
choose which one to receive without letting Sam know her choice s, but should not be
able to learn any information other than the secret bs she has selected.

3.1 OT from DCC in the Semi-Honest scenario

In this scenario, both parties are honest-but-curious, meaning that they follow the pro-
tocol, but try afterward to learn extra knowledge from their record of the conversation.
In particular, Sam will try to guess which secret Rachel selected, while Rachel’s aim is
to get as much information as possible on the other secret.

Protocol

Before starting any communication, some preparatory computation needs to be
completed. In particular, Sam forges a set of bit strings C = c1, c2, . . . , cn, all of
the same length k. Then he fixes a constant h < k, such that, for every string ci
in the set

(a) the substring sn (ci) composed of the first h bits of ci and called sequence
number, is unique for every string in the set C;

(b) the substring si (ci) composed of the last (k− h) bits of ci and called string
identifier, is unique for every string in the set C.

After that, Sam forges another set C ′ = c′1, c
′
2, . . . , c

′
n. All the strings in C ′ are of

the same length k as those of C, and they can be logically divided into the two
substrings as well, so that

(a) in any given string c′i, the sequence number substring sn (c′i) is exactly the
same as that of the string ci ∈ C. That is, ∀i ∈ 1, . . . n, sn (c′i) = sn (ci);

(b) for every string c′i, the string identifier substring si (c′i) is unique in the set
C ′, and is also different from any other string identifier in C.

The values of k and h can be arbitrarily chosen, as long as they are long enough
for the above properties to be respected, and the information is shared between
the parties. In particular, we can gather that the values of k and h are subject,
due to the requirement for the substrings of being unique, to the constraints

2h ≥ |C| = n

2k−h ≥ |C ∪ C ′| = 2n

Completed these preliminary steps, the parties are ready to proceed with the
protocol as follows:

1. Sam sends the set C to Rachel using BDDC(p), a Binary Discrete-time Delaying
Channel with probability p. All the strings in the set are admitted into the
channel at the same instant t0.

2. Sam sends the set C ′ to Rachel using BDDC(p) at instant t1.

3. Rachel at instant u0 receives over BDDC(p) all the strings in the set C that have
not been delayed by the channel. If less than half of the strings are received, then
the number of delays is too high for the protocol to be secure, and Rachel sends
instructions to Sam in order to abort the communication and start again from
the beginning. In this case, even the sets C and C ′ have to be recreated from
scratch.



4. Rachel at instant u1 receives over BDDC(p) the strings from set C delayed once,
plus the strings of set C ′ that have not been delayed. She keeps listening on the
channel at instants u2, u3, . . . until all the delayed strings have been received.

5. Rachel picks a set of sequence numbers Is subject to the constraints

(a) |Is| = |C|
2

= n
2

(b) for every sequence numbers in Is, the corresponding string ci ∈ C has been
received at u0

Then, she picks a set I1−s where she puts the remaining sequence numbers, re-
gardless of their instant of arrival. Every sequence number should appear once
and only once in one of the two sets, and not in the other.
Rachel sends I0 and I1 to Sam over a clear channel.

6. Sam receives I0 and I1, and chooses a universal hash functions f , whose output
is 1-bit long for any input. Let τc be the value corresponding to the time at
which a string c has been sent (that is, τc = 0 if the string c was sent at t0, or
τc = 1 if the string was sent at t1). For each set Ii, Sam computes the string
stri by concatenating each string identifier si in the set, XORed with τ0 if the
corresponding string was sent at t0, or τ1 if it was sent at t1

stri =
(
(si1 ⊕ τ1)|| . . . ||(si|Ii| ⊕ τ|Ii|)

)
The two strings str0, str1 are given in input to the hash function f to obtain the
two values h0 and h1

h0 = f(str0)

h1 = f(str1)

When the computation is complete, Sam sends to Rachel the function f and the
two values

d0 = (h0 ⊕ b0), d1 = (h1 ⊕ b1)

7. Rachel computes her guess for bs, according to the formula

bs = f(strs)⊕ ds

Remark It should be noted that the steps 2 and 3 of the protocol could also happen
in the inverse order, or simultaneously. This is due to the fact that there is no explicit
constraint regarding the chronological order of t1 and u0.
In the same way, the string identifiers inside of the sets I0 and I1, and the sets them-
selves are sent in no particular order (so that Sam cannot get any information from
this).

3.2 Why is it working?

As always in the study of security and cryptography, to show that an algorithm or
protocol is secure, we first have to give a clear definition of what we mean by the word
secure. In this case, the task is quite simple. In fact, with the proposed protocol, we
are implementing the well-defined Oblivious Transfer problem. Consequently, we have
to prove the two main goals of Oblivious Transfer itself:

1. the sender (Sam) sends b0 and b1, but learns nothing about the receiver’s choice.
2. the receiver (Rachel), gets the bit bs she has chosen, but no information about

the other bit b1−s.



Proof (Sketch) We are first going to address the first requirement. Sam sends the two
bits during step 6. Given the fact that the Binary Discrete-time Delaying Channel gives
no feedback to the sender or the receiver about which strings are delayed and which
not (as per the channel definition), he can make no assumption about that. Following
this, he has no mean to get any information from his own transmissions (steps 1, 2 and
6 of the protocol). During steps 3, 4 and 7, no communication at all takes place, so
these steps are of no use when trying to get extra information as well. All that is left
for Sam to try to exploit is the step 5, where Rachel sends back to him the two sets
of identifiers I0 and I1. The communication here happens over a clear channel, and
the sets are sent in no particular order, so Sam’s only hope is to analyze the content
of the transmission. The contents of the two sets are, however, already known to Sam
(they are the string identifiers he sent to Rachel himself). The discrimen, the difference
between the two from which to disclose Rachel’s choice is that she put in one, and only
one of the two all the delayed strings. Sam could therefore guess s, if only he had
any way of knowing a priori which strings have been delayed, but this is against the
channel properties, and so Sam is left clueless.

From Rachel’s point of view, what’s important is to receive the bit bs she has chosen.
XOR is both an associative and a commutative operation, and for its own properties
the formula she uses to compute bs

f(strs)⊕ ds = f(strs)⊕ (f(strs)⊕ bs) = (f(strs)⊕ f(strs))⊕ bs = 0⊕ bs = bs

A clarification is needed about the operands of the formula. In particular, f(strs)
appears twice. However, to get the result bs, Rachel uses two different values for each
of them. One of the two can be replaced by the value hs sent to her by Sam at the step
6, which is equivalent by definition. The other f(strs) is calculated by Rachel herself,
using the hash function f she received at the same step 6 and the string identifiers of
the set Is. She will compute the result with the same formula used by Sam

stri =
(
(d1 ⊕ τ1)|| . . . ||(d|Ii| ⊕ τ|Ii|)

)
In the case of Is, she has all the needed values. She has chosen the string identifiers
d1 . . . d|Is| herself, while the τ1 . . . τ|Is| are clearly all 0 (she choose the strings in Is so
that they all arrived at u0).

But we know Rachel is a curious person, and she will try to guess the other bit b1−s

as well. Unfortunately for her, using the same procedure as above will do no good. In
fact, during step 4, Rachel has no way of distinguishing the couples of strings (ci, c

′
i)

sharing the same sequence number and for which c1 was delayed by the channel and
c′1 was not. Therefore she cannot determine accurately the values τ1 . . . τ|I1−s|, needed
to solve the equation and obtain the value of b1−s from h1−s. Again, the property of
the Binary Discrete-time Delaying Channel of giving no feedback to the sender or the
receiver about which strings are delayed and which not is impossible to overcome.

3.2.1 About the values of p, n

When sending strings through a delaying channel, one would usually expect that chan-
nel to actually delay at least some of those strings. But our channel only has a probabil-
ity of delaying each string, and, as always when dealing with probabilities, we cannot
rule out completely the possibility of having all of them being emitted with no delay at
the first available output time. This is a particularly bad case from our point of view,
since it would mean that Rachel would be able to get the values of both bits b0 and b1.
But how realistic is this scenario? When calculating Rachel’s probability of decoding
b1−s just in the same way of bs, we have two variables we need to take into account:
the probability of the channel p, and the number n of sequence numbers sent back to
Sam in the sets Is and I1−s. In fact, the higher this number is, the more strings will
have to pass through the channel unaffected. Thus the probability is equal to (1− p)n.



Making sure that at least some strings are delayed is however not enough. To
understand why, we are going to adopt two new terms. We call a collision the event
in which both sequence numbers of the strings ci ∈ C and c′i ∈ C ′ arrive at the same
output time. We call a switch the event in which the sequence number of c′i arrives
earlier than the one of ci. Rachel intuitively understands that a switch is not such a
likely event. In fact if, for instance, ci is delayed once, and c′i is delayed once as well,
it is quite a safe guess to assume that the first sequence number received is ci and the
second is c′i, rather than the other way around. If she tries to predict the set a string
comes from in this way, she will make a correct guess every time the delay of ci is equal
or lesser than the delay of c′i (no switch occurs). Taking into account also the case for
which ci is not delayed (no need to guess), this happens for each string with probability

Pr =
1

(1 + p)

Besides, one can estimate that, for the strings ci and c′i, the probabilities of a
collision and of a switch are respectively

Pr(collision) =
p (1− p)

1 + p
Pr(switch) =

p2

1 + p

Since Rachel makes a correct guess with a probability higher than 1
2

only when
there is no collision nor any switch, we obtain that the probability for her to guess b1−s

correctly is

Pr(b1−s) =
1

2
+

(1 + p)−n

2

which provides her with a negligible advantage as soon as p > 0.

3.3 Robustness against cheating

Up to this point we did not take into account the possibility of having Sam or Rachel
actively trying to get extra information by deviating from the protocol. We call this
behavior cheating.

A way Sam could try to influence how Rachel builds the sets I0 and I1, and then try
to guess which one refers to the strings she received with some delay, is to willfully hold
back one or more strings from the set C and artificially “delaying” them by sending
them only at instant t1. When, at step 6, he receives I0 and I1, he will recognize I1−s as
the one containing those strings, thus being able to guess s. While we cannot prevent
this behavior completely, we can make it easier for Rachel to detect Sam’s cheating
and act accordingly. In particular we can impose an upper bound over the number
of strings Sam can hold back, by having Rachel check at steps 3 and 4 that there
are not more than a certain number of delayed strings. If this happens, Rachel will
reject the transmission and instruct Sam to proceed with a new one. However much
we limit Sam’s cheating, it is still true that only one artificially delayed string can be
enough to reveal I1−s. A way to address this issue is to introduce more noise in the
communication, raising p and having Rachel accept at point 3 only sets with a number
of delays in [n

2
,
n

2
+ ε
]

At the same time we will make use of strong enough error correcting codes to ensure
that Rachel always gets the correct result even with the ε delayed strings selected for
Is. Since both I0 and I1 contain delayed strings, Sam cannot compute Rachel’s choice.



Rachel can also move from the protocol trying to enhance her possibilities of cor-
rectly guessing b1−s. However, her options are more limited. Being only responsible,
during the interaction with Sam, of choosing which string identifiers are placed either
into Is or I1−s, she can try to improve her chances of decoding b1−s by placing differ-
ently the string identifiers into the sets. But this has a cost, and whenever she puts
one more non-delayed string into I1−s, she is taking one out of Is, thus reducing her
probability of correctly decoding even the chosen bit bs.
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